13 research outputs found

    Recommendation for a Medical System Concept of Operations for Gateway Missions

    Get PDF
    NASAs exploration missions to cis-lunar space will establish a permanent gateway to future transport missions to Mars. These missions mandate a significant paradigm change for mission planning, spacecraft design, human systems integration, and in-flight medical care due to constraints on mass, volume, power, resupply, and medical evacuation capability. These constraints require medical system development to be tightly integrated with mission and habitat design to provide a sufficient medical infrastructure and enable mission success. This concept of operations provides a vision of medical care needs that will be used to guide the development of a medical system for the cis-lunar Gateway Habitat. This medical system will serve as the precursor to what is implemented in future exploration missions to Mars. This concept of operations documents an overview of the stakeholder needs and system goals of a medical system and provides examples of the types of activities for which the system will be used during the mission. This concept of operations informs the ExMC systems engineering effort to define the Gateway Habitat Medical System by documenting the medical activities and capabilities relevant to Gateway missions, as identified by the ExMC clinician community. In addition, this concept of operations will inform the subsequent systems engineering process of developing technical requirements, system architectures, interfaces, and verification and validation approaches for the medical system. This document supports the closure of ExMC Gap Med01: We do not have a concept of operations for medical care during exploration missions, corresponding to the ExMC-managed human system risk: Risk of Adverse Health Outcomes & Decrements in Performance due to Inflight Medical Conditions

    Medical System Concept of Operations for Mars Exploration Mission-11: Exploration Medical Capability (ExMC) Element - Human Research Program

    Get PDF
    NASAs exploration missions to Mars will have durations of 2-3 years and will take humans farther away from Earth than ever before. This will result in a paradigm shift for mission planning, spacecraft design, human systems integration, and in-flight medical care. Constraints on real-time communication, resupply, and medical evacuation are major architectural drivers. These constraints require medical system development to be tightly integrated with mission and vehicle design to provide crew autonomy and enable mission success. This concept of operations provides a common vision of medical care for developing a medical system for Mars exploration missions. It documents an overview of the stakeholder needs and goals of a medical system and provides examples of the types of activities the system will be used for during the mission. Development of the concept of operations considers mission variables such as distance from Earth, duration of mission, time to definitive medical care, communication protocols between crewmembers and ground support, personnel capabilities and skill sets, medical hardware and software, and medical data management. The information provided in this document informs the ExMC Systems Engineering effort to define the functions to be provided by the medical system. In addition, this concept of operations will inform the subsequent systems engineering process of developing technical requirements, system architectures, interfaces, and verification and validation approaches for the medical system. This document supports the closure of ExMC Gap Med01: We do not have a concept of operations for medical care during exploration missions, corresponding to the ExMC-managed human system risk: Risk of Adverse Health Outcomes & Decrements in Performance due to Inflight Medical Conditions. This document is applicable to the ExMC Element Systems Engineering process and may be used for collaboration within the Human Research Program

    IMPACT Concept of Operations

    Get PDF
    NASAs future exploration missions mandate a significant paradigm change for mission planning, spacecraft design, human systems integration, and in-flight medical care due to constraints on mass, volume, power, resupply missions, and medical evacuation capabilities. These constraints require further development of the human health and performance system, which includes the medical, task performance, wellness, data, human and other systems necessary to keep the crew healthy and functioning optimally. The human health and performance system will be tightly integrated with mission and habitat design to provide a sufficient human health and performance infrastructure to enable mission success. A suite of systems engineering tools will aid in the decision making process for the development of such a human health and performance system. This Concept of Operations provides a vision for a tool suite to conduct evaluations of human health and performance system options, inform research prioritization, and provide trade study support, based on evidence, risks, and systems engineering principles. The integrated tool suite under development is IMPACT

    The Effect of Heroic Medical Care on Mission Medical Outcomes

    Get PDF
    Study Objective: A catastrophic medical event depletes medical resources. What happens to the rest of the missions medical outcomes after such an event? Use Probabilistic Risk Assessment (PRA) to see if we can find out. What is the Integrated Medical Model? PRA model using Monte Carlo methodology; Used to assess mission risk due to in-flight medical events; User defined Design Reference Missions (DRM) (crew, duration, EVA (Extra-Vehicular Activity), etc.); Considers outcomes for 100 medical conditions that have or may occur in-flight; 100,000 trials conducted per DRM

    ExMC Approach to Pharmaceutical Stability Research: An Overview

    Get PDF
    Goals of Stability Studies: Identify medications that are stable under real and simulated space conditions, especially deep space radiation; Identify medications that are potent and safe after their expiration dates; Ultimately provide a safe and effective formulary for exploratory spaceflight missions. ExMC: Exploration Medical Capabilities

    Enabling Space Exploration Medical System Development Using a Tool Ecosystem

    Get PDF
    The NASA Human Research Program's (HRP) Exploration Medical Capability (ExMC) Element is utilizing a Model Based Systems Engineering (MBSE) approach to enhance the development of systems engineering products that will be used to advance medical system designs for exploration missions beyond Low Earth Orbit. In support of future missions, the team is capturing content such as system behaviors, functional decompositions, architecture, system requirements and interfaces, and recommendations for clinical capabilities and resources in Systems Modeling Language (SysML) models. As these products mature, SysML models provide a way for ExMC to capture relationships among the various products, which includes supporting more integrated and multi-faceted views of future medical systems. In addition to using SysML models, HRP and ExMC are developing supplementary tools to support two key functions: 1) prioritizing current and future research activities for exploration missions in an objective manner; and 2) enabling risk-informed and evidence-based trade space analysis for future space vehicles, missions, and systems. This paper will discuss the long-term HRP and ExMC vision for the larger ecosystem of tools, which include dynamic Probabilistic Risk Assessment (PRA) capabilities, additional SysML models, a database of system component options, and data visualizations. It also includes a review of an initial Pilot Project focused on enabling medical system trade studies utilizing data that is coordinated across tools for consistent outputs (e.g., mission risk metrics that are associated with medical system mass values and medical conditions addressed). This first Pilot Project demonstrated successful operating procedures and integration across tools. Finally, the paper will also cover a second Pilot Project that utilizes tool enhancements such as medical system optimization capabilities, post-processing, and visualization of generated data for subject matter expert review, and increased integration amongst the tools themselves
    corecore